END SEMESTER-EXAMINATION - DECEMBER 2023

Program: S.Y.B.Tech (Electrical) $\{\sim M$
Course Code: BS-BTE301

Duration: 3 Hours
Maximum Points: 100

Course Name: Laplace Transform, Vector calculus \& Linear Algebra

Semester: III

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together
3. Use of CALCULATOR is prohibited.

END SEMESTER-EXAMINATION - DECEMBER 2023

		$A=\left[\begin{array}{cccc}2 & 3 & 4 & 9 \\ 3 & 4 & 5 & 10 \\ 4 & 5 & 6 & 11 \\ 5 & 6 & 7 & 12\end{array}\right]$					
	c	Evaluate (i) $L\left\{t e^{t} \sqrt{1+\sin t}\right\}$ (ii) $L\left\{\frac{\sin ^{2} t}{t}\right\}$	8	1	BL3	1	1
3	a	Find the sum and product of the Eigen Values of A^{-1} where $A=\left[\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 4 & -5 & -3 & 0 \\ 5 & 6 & 7 & 1 \end{array}\right]$	6	3	BL4	7	
	b	Prove that $\int_{0}^{\infty} \frac{e^{-\sqrt{2} t} \sinh t \cdot \sin t}{t} d t=\frac{\pi}{8}$	6	1	BL5	1	
	c	Evaluate $\iint_{S}(\nabla \times \bar{F}) \cdot \hat{n} d s$, where $\bar{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$ and S is the surface of the paraboloid $z=9-\left(x^{2}+y^{2}\right)$ above XY plane.	8	2	BL5	5	
4	a	Evaluate $L\left\{\int_{0}^{t} e^{-4 u} \cdot \cos 2 u d u+2^{3!}\right\}$	6	1	BL5	1	
	b	Evaluate $\oint_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the region bounded by the X - axis and the upper half of the circle $x^{2}+y^{2}=4$	6	2	BL3	4	
	c	Find two non-singular matrices P and Q such that PAQ is in the normal form	8	3	BL3	6	

END SEMESTER-EXAMINATION - DECEMBER 2023

		$A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 3 & -1 & 2 \\ 1 & 2 & -1\end{array}\right]$					
5	a	Find the angle between the surfaces $x \log y=z^{2}-1$ and $x^{2} z=2-y$ at $\mathrm{P}(1,1,1)$	6	2	$\begin{aligned} & \hline \text { BL4 } \\ & , 5 \end{aligned}$	${ }^{3}$	3
	b	Using Convolution Theorem, Evaluate $L^{-1}\left\{\frac{1}{s^{3}(s+1)^{2}}\right\}$	6	1	BL4	2	
	c	Verify Cayley Hamulton Theorem for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and Hence find $A^{5}-2 A^{4}+3 A^{3}+A$	8	3	$\begin{aligned} & \mathrm{BL} 2 \\ & \mathrm{BL} 4 \end{aligned}$	7	
6	a	Prove that $\frac{\bar{r}}{r^{3}}$ is Solenoidal	6	2	BL5	3	
	b	If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & -1\end{array}\right]$, find A^{50}	6	3	BL3	7	
	c	Using method of Laplace Transform, solve $\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y=e^{\prime}, \quad y(0)=2, y^{\prime}(0)=-1$	8	1	$\begin{aligned} & \text { BL3 } \\ & \text { BL5 } \end{aligned}$	2	
7	a	Find the directional derivative of $\phi(x, y, z)=x^{3} y+y^{3} z+z^{3} x$ at $(1,-1,3)$ in the direction of the normal vector to the surface $x^{2}+y^{2}+z^{2}=9$ at $(-2,2,1)$	6	2	$\begin{aligned} & \text { BL2 } \\ & \text { BL3 } \end{aligned}$	3	
	b	Test the consistency of the following equations and solve them if they are consistent	6	3	BL5	6	

Bhatatiza Vidyabhatarys
SARDAR PATEL COLLEGE OF ENGINEERING
(Govennment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER-EXAMINATION - DECEMBER 2023

	$2 x+3 y-z-2=0$ $x+2 y+z+3=0$ $3 x+y-2 z-1=0$						
c	Verify Gauss Divergence Theorem for $\bar{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ over the surface of the cylinder $x^{2}+y^{2}=16, z=0, z=4$	8	2				
BLL							
BL3							5
:---	:---						

SARDAR PATEL COLLEGE OF ENGINEERING

(Suvernment Aidod Autonomous institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE-EXAMINATION - February 2024

Program: S.Y.B.Tech (Electrical) Sem 11
Course Code: BS-BTE301
Duration: 3 Hours
Maximum Points: 100

Course Name: Laplace Transform, Vector calculus \& Linear AIgebra
Semester: III

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together
3. Use of CALCULATOR is prohibited.

		Questions	Points	co	BL	Mo dule
1	$1{ }^{\text {a }}$	Determine the constants a, b and c if the matrix $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c\end{array}\right]$ is orthogonal	6	3	BLS	6
	b	Evaluate $L^{-1}\left\{\frac{s}{(s+1)(s+2)(s+3)}\right\}$	6	1	BLS	2
	c	Find Eigen Values and corresponding Eigen Vectors of $A=\left[\begin{array}{lll} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{array}\right]$	8	3	BL3	7
2	a	Evaluate $\int_{c}\left(x^{2}-y^{2}+x\right) d x-(2 x y+y) d y$ from origin to $(1,1)$ along a parabola $y=x^{2}$.	6	2	BLS	4
	b	Reduce the following matrix A to normal form and hence find its rank	6	3	BL2	6

Munshi Nagar, Andheri (W) Mumbai - 400058
RE-EXAMINATION - February 2024

Munshi Nagar, Andheri (W) Mumbai-400058
RE-EXAMINATION - February 2024

		$A=\left[\begin{array}{cccc}3 & 2 & 1 & 4 \\ 12 & 4 & 8 & 0 \\ 9 & 5 & 4 & 9\end{array}\right]$				
5	a	Find the angle between the surfaces $x \log y=z^{2}-1$ and $x^{2} z=2-y$ at $\mathrm{P}(1,1,1)$	6	2	$\begin{aligned} & \hline \text { BLA } \\ & , 5 \end{aligned}$	3
	b	Using Convolution Theorem, Evaluate $L^{-1}\left\{\frac{1}{s^{2}(s-1)^{3}}\right\}$	6	1	BLA	2
	c	Verify Cayley Hamilton Theorem for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and Hence find $A^{5}-2 A^{4}+3 A^{3}+A$	8	3	$\begin{aligned} & \text { BL2 } \\ & \text { BL4 } \end{aligned}$	7
6	a	Prove that $\frac{\vec{r}}{r^{3}}$ is Solenoidal	6	2	BL5	3
	b	If $A=\left[\begin{array}{ll}\text { a } & \alpha \\ \alpha & \alpha\end{array}\right]$, prove that $e^{4}=e^{\alpha}\left[\begin{array}{lll}\cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha\end{array}\right]$	6	3	BL3	7
	c	Using method of Laplace Transform, solve $\frac{d^{2} y}{d t^{2}}-3 \frac{d y}{d t}+2 y=4 e^{2 t}, \quad y(0)=-3, y^{\prime}(0)=5$	8	1	$\begin{array}{\|l\|} \hline \text { BL3 } \\ \text { BL5 } \end{array}$	2
7	a	Find the directional derivative of $\phi(x, y, z)=x^{2} y+y^{2} z+z^{2} x$ at $(1,2,3)$ in the direction of the normal vector to the surface $x^{2}+y^{2}+z^{2}=3$ at $(1,1,1)$	6	2	$\begin{aligned} & \text { BL2 } \\ & \text { BL3 } \end{aligned}$	3
	b	Test the consistency of the following equations and solve them if they are consistent	6	3	BL5	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Alded Autoninivus listitule)
Munshi Nagar, Andheri (W) Mumbai-400058
RE-EXAMINATION - February 2024

	$3 x-y+2 z=1$ $x-2 y+3 z=3$ $x-y+z=-1$ $x+2 y-z=3$				
c	Verify Gauss Divergence Theorem for $\bar{F}=4 x \hat{i}-2 y^{2} j+z^{2} k$ over the surface of the cylinder $x^{2}+y^{2}=16, z=0, z=4$	8	2	BL, BL3	5

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Program: Electrical Engineering End Sem DEC 2023. Course code: PC-BTE 301 Name of the Course: Electronic Circuits

Duration: 3 Hour
Maximum Marks: 100
Semester: III

Solve any five questions out of seven.

Q. Na		Pts	co	BL	Module
$\begin{aligned} & 1 . \\ & \mathbf{A} \end{aligned}$	For the circuit shown below, (i) Draw $\overline{\mathrm{DC}}$ and ac equivalent circuits. (ii) Determine $\mathrm{I}_{\mathrm{BQ}}, \mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}$ assuming $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ (iii) Determine Zi, Zo, Given $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{ie}}=2 \mathrm{k} \Omega$.	10	1	3	1
B.	Explain how to calculate h parameters from BJT characteristics.	10	1	2	1
2 A	In the circuit arrangement with $F E T, V_{G G}$ is $2 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{D}}-2 \mathrm{~K} \Omega$, $V_{D D}=16 \mathrm{~V} . \mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-3 \mathrm{~V}$. Draw the circuit diagram. Calculate VDSQ. Which type of biasing is used? Explain the same.	8	1	3	2
$\begin{aligned} & \hline \mathbf{B} \\ & \text { (i) } \end{aligned}$	Draw the construction di of MOSFET and hence explain how it is different than JFET.	${ }^{4}$	1	2	1
(ii)	Draw and explain ac equivalent circuit of JFET. Explain the parameters.	8	1	2	1
$\begin{aligned} & 3 \mathrm{~A} \\ & \text { (i) } \end{aligned}$	Calculate the CMRR in dB for a differential amplifier having a differential gain of 2000 and a common mode gain of 0.2 .	2	2	3	3
(ii)	Explain the statement. 'Use of current mirror circuit enhances performance of differential amplifier'	${ }^{8}$	2	2	3

(iii) Define CMRR. The following specifications are given for the dual input, balanced-output differential amplifier:

$$
\mathrm{R}_{\mathrm{C}}=5 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{S}}=100 \Omega,
$$ $\mathrm{R}_{\mathrm{E}}=50 \mathrm{~K} \Omega,+\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}, \quad \mathrm{~h}_{\mathrm{ie}}=2 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=50$.

Draw the circuit diagram showing components values. Determine $\mathbf{A}_{d}, \mathbf{A}_{\mathrm{c}}$.

(iv)	Opamp has open loop gain 20000 and bandwidth 40 Hz . Determine unity gain frequency of the opamp.	1	2	${ }^{3}$	4
(v)	Explain the statement with the help of proper circuit diagram and waveforms 'A zero-level detector is a comparator with a trip point referenced to zero'	${ }^{4}$	2	${ }^{2}$	4
$\begin{gathered} B \\ (i) \end{gathered}$	Fig. shows input output waveforms. Identify the application of opamp and draw the circuit diagram accordingly.	6	2	3	4
	(a) (b)				
	(c)				
(ii)	Explain why opamp 741 is not suitable for high frequency applications.	4	2	1	
$\begin{array}{r} \mathbf{5} \\ \mathbf{A} \end{array}$	Explain with the help of proper circuit arrangements and waveforms applications of IC 555 as PWM	10	3	${ }^{2}$	5
$\begin{gathered} \mathbf{B} \\ (i) \end{gathered}$	With respect to functional diagram of 555 explain function of 1. Trigger pin 2. Discharge pin	${ }^{4}$	3	1	
(ii)	Determine the frequency of oscillation for the astable multivibrator using IC555. Given that $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=2.5 \mathrm{~K} \Omega$ and $\mathrm{C}=100 \mathrm{pF}$.	2	3	${ }^{3}$	5
(iii)	Identify the application of IC 555 in the following diagram. Hence draw the output waveform showing the timing details. Given $\mathrm{Vcc}=12 \mathrm{~V}$, trigger pulse variation is from 0 to $-5 \mathrm{~V}, \mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$	4	3	3	5

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Duration: 3 Hour Maximum Marks: 100
 Semester: III

Program: Electrical Engineering Leven II Course code: PC-BTEA01
Name of the Course: Electronic Circuits

Solve any five questions out of seven.

Q. No.

1 A State whether the following \quad Pis \quad CO \quad BL \quad M.
(i) Higher the value of stability factor poor is the stability of the BJT amplifier.
(ii) h_{fe} can be calculated from input characteristics of BJT

B Draw the circuit of fixed bias BJT amplifier with Voc $-9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.5 \mathrm{~K}$, $\mathrm{R}_{\mathrm{B}}-60 \mathrm{~K}$. Draw do equivalent circuit. Hence determine $\mathrm{I}_{\mathrm{BQ}}, \mathrm{I}_{\mathrm{CQ}}, V_{C E Q}$ and stability factor. Draw ac equivalent circuit. Hence determine input impedance, output impedance for the above circuit Given $\mathrm{h}_{\mathrm{ie}}=1.2 \mathrm{~K} \Omega$, $h_{\mathrm{re}}=80$

2 4 State whether thc following statements are true/false. Justify the same.
(i) MOSFET is also referred to as [GFET
(ii) Transconductance g_{m} can be calculated from JFET characteristics.

B Given the values of $V_{D Q}$ and $I_{D Q}$ for this circuit, determine the required values $\quad 10$ of R_{D} and $R_{\text {s. }}$. Explain the type of biasing used.

3A With a neat circuit dagram explain working of ditterential amphitier. Describe different modes of operation.
B The following specifications are given for the dual input, balanced-output 10 differential amplifier :
$\mathrm{R}_{\mathrm{C}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{s}}=150 \Omega, \mathrm{~V}_{\mathrm{CC}}$ and V_{EE} are 12 V , and -12 V respectively, $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{ie}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V} . \mathrm{R}_{\mathrm{E}}=8.2 \mathrm{k} \Omega$.
Determine the operating points (I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$) of the two transistors. Determine $A_{c}, A_{d}, R_{0}, R_{i}, C M R R(d B)$.

4A Draw and explain block diagram of opamp.
B Explain application of opamp as (i) integrator. ii) half wave rectifier
5 A With a neat circuit diagram explain how the 555 is used as monostable multivibrator.
B For an astable multivibrator, $\mathrm{R}_{\mathrm{A}}=2.2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B}}=6.8 \mathrm{~K} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}$. Calculate $\mathrm{T}_{\text {HIGH }}, \mathrm{T}_{\text {LOw }}$, Frequency, Duty cycle.

6 A What are the advantages of negative feedback?
B With the help of suitable block diagram explain the different types of negative feedback. For each type give feedback factor, input resistance, output resistance.

7A In RC phase shift oscillator feedback circuit provides phase shift of 90°. State whether this statement is True/False. Justify with the help of corressponding circuit diagram.
B Draw the circuit of wien bridge oscillator by selecting proper components
(i) values to get oscillator frequency of 1.2 kHz .
(ii) To generate a MHz signal, which is the most suitable circuit? Why?
Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai-400058.
End Semester Exam
December 2023
Semester: III

Max. Marks: 100
Class: S.Y. Mech/Electrical LeUu

Course Code : HSM BTM 307/BTE 301

Duration: 3 Hours
Program: B.Tech

Organizational Communication and Interpersonal Skills
Note:

- Question 1 and Question 2 is Compulsory
- Out of remaining 5 questions attempt any 3
- Each question carries 20 marks
- Start every question from fresh page.

Questio ns	Answer the following questions:	$\begin{array}{\|l\|} \hline \mathbf{P O I} \\ \mathrm{NT} \\ \mathrm{~S} \\ \hline \end{array}$	CO	BL	PI
Q.L.	Attempt any Two questions out of Six. Each question carries Ten marks: A. Define a team. What are the types of teams? What are the advantages and disadvantages of working in a team? B. Differentiate between a leader and a Boss. Explain the six different leadership styles with an example each. C. Explain in detail Stephen Covey's Time Management Quadrant. What are the different techniques to be adopted for utilizing time effectively? D. "Stress management helps in leading a happier and healthier life". What are some psychological and emotional signs of stress? E. Define reports. Explain contents of a report. F. List the prefatory parts of a report with an explanation	20	$\begin{array}{\|l\|} \hline \mathbf{0 1 , 2}, \\ \mathbf{3 , 4 , 5} \\ \hline \end{array}$	04	$\begin{array}{\|l\|} \hline 10.1 . \\ \hline 3 \\ \hline \end{array}$
Q. 2	All India Council of Technical Education has appealed the Principals of all engineering colleges to implement National Education Policy	$\begin{aligned} & \mathbf{0 5 +} \\ & 15 \end{aligned}$	04	03	4.1.2

	Other Important Criteria - Students applying in Wipro must be Indian citizens or should carry a PIO or OCI card, in case holding a passport of any other country. - Candidate should have done a full degree course recognized by the Central/State Government of India - Students should be proficient in Microsoft, Canva, Matlab and C programming softwares. Service Agreement - Applicable for 15 months post joining @ INR 75,000 on pro rata basis				
Q.5.	Your best friend's concepts are clear and her reasoning is sound, but in the feedback to her presentations, the audience often says that she is very feeble. You just cannot hear her beyond the first two rows. She fumhles with words during presentations. She has also not made her PowerPoint slides properly as she has not read any rules for preparing PowerPoint presentations. You want to see her improve the quality of delivery of her presentations, as you feel this is a critical skill needed for going forward and achieving success as an engineer.	(20)	05	04	10.1.
A.	What suggestions would you give her for presentations regarding improvement in the Content, Delivery, and Non-Verbal communication? What tips would you like to give for the talk power formula and the Visual Aids during presentation?	10 10			
Q.6. A. Q.6. B.	"The first step in getting the right job and adding value to your career is to plan for your job". Explain sequentially the nuances and their stages to be focussed while planning. Prepare a detailed swot analysis in the quadrant for the Placements for Engineering students in SPCE.	(10) (10)	02	01	$\begin{aligned} & 10.1 \\ & 2 \end{aligned}$
Q.7. A.	Multiple Choice questions: Each question carries 02 marks 1. Business Etiquette \qquad a. Ensures a business communicates with all the proper people b. Is a guide to personal success c. Helps a business avoid civil rights complaints d. Ensures a professional business environment is maintained.	(10)	$\begin{aligned} & \mathbf{0 1 , 0} \\ & 3 \end{aligned}$	03	

Bharatiya Vidya Bhavan's

> Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai -400058. Re-Examination
> February 2023

Max. Marks: 100
Class: S.Y. Mech/Electrical Leach
Duration: 3 Hours
Program: B. Tech
Course Code : HSM BTM 307/BTE 301

Organizational Communication and Interpersonal Skills

Note:

- Question 1 and Question 2 is Compulsory
- Out of remaining 5 questions attempt any 3
- Each question carries 20 marks
- Start every question from fresh page.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
Murudi, along with your five recommendations. \\
(Apply minimum four procedures to collect the required data).
\end{tabular} \& \& \& \& \\
\hline Q.3.

A.

B. \& \begin{tabular}{l}
Imagine you are the General Secretary of the college. The Chairperson Student Welfare Committee has requested you to submit a detailed program for SPHINX the annual technical and Cultural Event of the college to be conducted in the month of February for four days. Conduct the Student Council meeting to discuss the dates, Budget, List of events, Arrangements, list of Celebrities, Evening events.

Draft the notice and agenda for the meeting

Assuming the meeting conducted prepare the minutes of the meeting.

 \&

(20)

10

10

\end{tabular} \& 01 \& \[

$$
\begin{aligned}
& \mathbf{0 2}, \\
& \mathbf{0 3}
\end{aligned}
$$
\] \& 3.1.1

\hline | Q. 4 |
| :--- |
| A. |
| B. | \& | Draft a Job Application Letter for the Job opening mentioned below. |
| :--- |
| Prepare a detailed resume for the post mentioned. |
| Wipro Eligibility Criteria for Fresher's 2024 |
| - Candidate should have 60% throughout their academics. |
| - Students from Students who have completed Graduation and Graduation in BE, B. Tech or 5 Year integrated Mi. Tech. |
| - All Engineering Branches are Eligible. |
| Backlog Criteria |
| - Candidate should not have any backlog at the time of Selection Process. |
| Education Criteria |
| - Maximum 3 years in education gap, if any, is allowed between 10 th and graduation. |
| - Candidate should have done a full degree course recognized by the Central State Government of India. |
| Other Important Criteria |
| - Students applying in Wipro must be Indian citizens or should carry a PIO or OCI card, in case holding a passport of any other country. |
| - Candidate should have done a full degree course recognized by the Central/State Goverument of India |
| - Students should be proficient in Microsoft, Canva, Matlab and C programming softwares. |
| Service Agreement | \& | (20) |
| :--- |
| 10 |
| 10 | \& 02 \& 01 \& \[

$$
\begin{aligned}
& 10.1 . \\
& 2
\end{aligned}
$$
\]

\hline
\end{tabular}

	- Applicable for 15 months post joining @ INR 75,000 on pro rata basis				
Q.5. A. B.	What suggestions would you give to yourself for presentations regarding improvement in the Content, Delivery, and Non-Verbal communication? Explain the talk power formula with an example of a speech and the Visual Aids during presentation?	10 10	05	04	$\begin{aligned} & 10.1 . \\ & 3 \end{aligned}$
$\begin{aligned} & \text { Q.6. A. } \\ & \text { Q.6. B. } \end{aligned}$	What is Swot analysis? Write the questions that should be asked in each quadrants of swot. Prepare a detailed swot analysis in the quadrant for the Job market for Engineering stadents.	(10) (10)	02	01	$10.1 .$
Q.7. A.	Multiple Choice questions: Each question carries 02 marks 1. Business Etiquette \qquad a. Ensures a business communicates with all the proper people b. Is a guide to personal success c. Helps a business avoid covil rights complaints d. Ensures a professional business environment is maintained. 2. The four areas covered by business etiquette are: a. Texting, dress, computers and dinners b. informal, formal, verbal and non-verbal c. communication styles, dress and appearance, technology and social situations d. Communication Styles, transportation, financial and social situations e. None of these 3. You disagree with a point your boss made at your weekly brain storming session you: a. random blurt your opinion in front of everyone b. politely disagree and suggest an alternative idea. c. ask to meet personally with your superior once the session is done to voice your objections d. complain to your co-workers behind your boss's back 4. It is casual Friday, but you have a meeting with a client. How should you dress that day? a. casually	(10)	$\begin{aligned} & 01,0 \\ & 3 \end{aligned}$	03	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)Munshi Nagar. Andheri (W) Mumbai - 400058
END SEM -JAN 2024

Program: SY Btech., Electrical Engineering $\mathrm{CNM} 11 /$
Course Code: PC-BTE302
Course Name: Electrical Networks

Duration: 3 hours

Maximum Points:100
Semester:III

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicates full marks.

2c) For the given linear graph of a network, for the given tree (shown with firm lines, including branches $1,5,7,3$)write the i) incidence matrix ii) fundamental cut-set matrix iii) fundamental tie-set matrix.

Q3(b) For the circuit shown in fig determine the current in the 10Ω resistor when the switch is closed at $t=0$. Assume initial current through the inductor is zero..(Using Laplace transform) 10Ω.

b) In the network of fig the switch is closed at $t=0$. Obtain the expression for current $i(t)$ for $t>0$, Given Vs $=100 \mathrm{~V}, \mathrm{R}=2 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=1 \mu \mathrm{~F} \ldots$..(Using Laplace transform).

Q4(a) Obtain the Norton equivalent network across A and B

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)Munshi Nagar, Andheri (W) Mumbai - 400058

Re exam -FEB 2024

Program: SY Btech., Electrical Engineering Course Code: PC-BTE302

Course Name: Electrical Networks

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicates full marks.

2c) | The reduced incidence matrix of an oriented graph is given.Draw the |
| :--- |
| graph and how many trees are possible with this graph. Write thr tieset |
| and culset lor the sarne. |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
50
\] \\
b) \\
c)
\end{tabular} \& \begin{tabular}{l}
Obtain the voltage \(\mathrm{V}_{\mathrm{AB}}\) by Superposition theorem \\
Check whether the following is Hurwitz
\[
P(s)=s^{4}+7 s^{3}+6 s^{2}+21 s+8
\] \\
Obtain the expression of an capacitor voltage if it is connected to dc voltage source through a switch instantaneously and having a resistor in series. Assume initial conditions to be zero. Draw the profiles of \(\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}\) and \(\mathrm{I}_{c}\).Obtain the values of current for \(5^{\text {th }}\) time constant.
\end{tabular} \& 8

4

8 \& 1 \& | 3 |
| :---: |
| |
| |
| |
| |
| 3 |
| 3 |
| 2,3 |

\hline Q5.(a) \& In the network switch K is closed at $\mathrm{t}=0$. Assuming all initial conditions as zero,find $\mathrm{I}, \mathrm{di} / \mathrm{dt}, \mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$ \& 10 \& 2 \& | 3 |
| :---: |
| |
| |
| |

\hline \& at $\mathrm{t}=0$. \& 10 \& 2 \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q6.(a)

$6 b)$

c) \& | Determine Y and Z parameters for the network shown in fig. |
| :--- |
| Derive $A B C D$ parameters for two port network. |
| For the given network determine voltage transfer function V_{2} / V_{1}. | \& 10

5

5 \& | 3 |
| :--- |
| 3 |
| 4 | \& 3

2

\hline Q7a) \& | Answer any 2 |
| :--- |
| Realise Cauer I and II forms of the following LC impedance function. $Z(s)=\frac{4\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}$ | \& 10 \& 4 \& 3

\hline b)

c) \& \begin{tabular}{l}
Realise the Foster form I for the LC impedance function.
$$
Z(s)=\frac{4\left(s^{2}+1\right)\left(s^{2}+9\right)}{s\left(s^{2}+4\right)}
$$

Check whether the following function is positive real.
$$
\mathrm{F}(\mathrm{~s})=\frac{s^{3}+8 s^{2}+15 s}{s^{2}+5 s+4}
$$

 \&

10

10
\end{tabular} \& 4

$$
3
$$ \& 3

4
4

\hline
\end{tabular}

SIRDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar: Andheri (W) Mumbai - 400058
End Sem - January 2024 Examinations

Course Code: PC-BTE303
Course Name: Digital Electronics

Maximum Points: 100
Semester: III

- Question 1 is compulsory

- Attempt any 4 out of remaining 6 questions
- Make suitable assumptions wherever necessary

SARDAR PATEL COLLEGE OF ENGINEERING

(Goverament Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Sem - January 2024 Examinations

3 a .	Explain the working of TTL NAND gate.	10	4	2
3b.	Design a sequence generator for the following sequence using Left shift register 101100	10	2	6
4a.	Implement the following $f(A, B, C, D)=\sum m(0,1,3,5,7,8,9,10,12,13,15)$ using 1. Single 8:1 Mux 2. Single 4:1 Mux	10	2	4
4b.	Design the following counter using T Flip Flop.	10	2	6
5 a.	Implement the following using 1:4 DeMux i. 2 input XOR Gate ii. 2 input AND gate	10	2	4
5b.	The input to a combinational circuit is a valid single digit BCD data. Design the logic circuit using minimum hardware to detect whenever a number greater then 5 appears at the input.	10	2	6
6 a.	Discuss in detail PLA with diagram.	10	4	2
6 b .	Discuss the drawbacks of Ripple counter	10	2	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Govertment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Sem - January 2024 Examinations

7a.	i. Identify the type of state machine. ii. Assume S0 as 00, S1 as 01, S2 as 10, and S3 as 11. Determine the state table for the same.	10	3	4
7 b .	Design a 10 bit even Parity Generator circuit.	10	2	6

SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
Re Exam/ Previous Exam - February 2024 Examinations
Program: Electrical S. Y B PCA
Course Code: PC-BTE303
Course Name: Digital Electronics

- Attempt any 5 out of 7 questions.
- Make suitable assumptions wherever necessary.

Q.No.	Questions	Points	CO	BL
1a.	Discuss Look ahead Carry generator.	10	2	2
1b.	Implement BCD to Seven Segment (common anode type) code converter	10	2	3
2a.	Design a 6 bit adder circuit using IC 7483.	10	2	6
2b.	Explain what are the problems associated with asynchronous counter and how they can be overcome.	10	2	2
3a.	Do the following conversion: i. S-R flip flop to D flip flop Ji.K flip flop to T flip flop	10	2	5
3b.	Explain the working of CMOS NAND and NOR gate. ii.	Implement the following 16:1 Mux using 8:1 Mux and additional gates.	10	2
4b.	Explain with help of neat diagram Left shift register and Right Shift register.	10	2	2
5a.	Design II bit comparator using IC 7485.	4	2	
5b.	Discuss the classification of memories.	10	2	6
6a.	Design a MOD-10 ripple up counter.	2	6	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomons Institute)
Munshi Nagar. Andheri (W) Mumbai-400058
Re Exam/ Previous Exam - February 2024 Examinations

END SEM EXAMINATION JAN 2024
Program: S.Y.B.Tech. Gfeet sen DII $\sqrt{11}$ Course Code: PC-BTE 04
Course Name: Electromagnetic Fields and Waves

Duration: One Hour

Maximum Points: 100
Semester: III
Notes: $\quad 1$ Question No. 1 is compulsory.
2. Solve any four questions from remaining six.
3. Draw neat diagrams wherever necessary.
4. Assume suitable data if necessary

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEM EXAMINATION JAN 2024

REEXAMINATION FEB 2024

Program: S.Y.B.Tech. Leu

Course Code: PC-BTE04
Course Name: Electromagnetic Fields and Waves
Notes: $\quad 1$ Question No. 1 is compulsory.
2. Solve any four questions from remaining six.
3. Draw neat diagrams wherever necessary.
4. Assume suitable data if necessary

Duration: Three Hour
Maximum Points: 100
Semester: III

RE-EXAMINATION FEB 2024

Munshi Nagar, Andheri (W) Mumbai - 400058

RE-EXAMINATION FEB 2024

	Figure 1	1			

